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Chapter 2 – Canonical Ensemble 
 

Ensemble: Collection of very large number of 
independent systems, each constructed to be a 
replica on a thermodynamic (macroscopic) level of 
particular thermodynamic system of interest. All 
members are identical from a thermodynamic point 
of view (not necessarily on molecular level). 36 

Partition function: Describes statistical properties 
of a system in thermodynamic equilibrium. PFs are 
functions of thermodynamic state variables (e.g. T, 
V). Most thermodynamic properties can be 
expressed in terms of partition function or 
derivatives thereof. 44 

Characteristic state function: thermodynamic 
function with the same natural variables of the 
particular ensemble. For some partition function Z, 
the characteristic state function is X from the form 

𝑍 = 𝑒−𝛽𝑋.  45, 55 

Microcanonical: Ensemble with constant (fixed) 
N, V, E. The PF Ω is fundamental to all ensembles 
(Laplace transform). Characteristic state function is 
TS. Probabilities of all states equal (principle of 

equal a priori probabilities): 𝐹̅ = ∑ 𝐹𝑗𝑗 . 

Canonical: Ensemble with constant N, V, T. 
Physical representation is mechanical system in 
thermal equilibrium with a heat bath at some fixed 
temperature. PF is Laplace transform of 
microcanonical ensemble over E. Characteristic 
state function is A. PF is: 

𝑄 = Σ𝑗  𝑒−𝛽𝐸𝑗 

Helmholtz free energy: Thermodynamic 
potential which is the characteristic state function 
(having the same natural variables) of canonical 
ensemble. 45 …………………………………… 

𝐴 = −𝑘𝐵𝑇 ln 𝑄 

Chapter 3 – Other Ensembles & 

Fluctuations 
 

Grand canonical: ensemble with constant μ, V, T. 

Physical representation is mechanical system in 

thermal and chemical equilibrium with a reservoir. 

PF is Laplace transform of microcanonical 

ensemble over N and E. Characteristic state 

function is pV. PF is: 

Ξ = ΣNΣj 𝑒
−𝛽𝐸𝑁𝑗𝑒𝛽𝜇𝑁 

Isothermal-isobaric: ensemble with constant N, 

P, T. Laplace transform of microcanonical 

ensemble over E and V. Physical representation is 

mechanical system with constant temperature and 

pressure, especially relevant conditions for many 

chemical reactions. Characteristic state function is 

Gibbs free energy. 55 Partition function: 

Δ = Σ𝑉Σ𝑗 𝑒−𝛽𝐸𝑉𝑗𝑒−𝛽𝑝𝑉 

Laplace transform: Connects different statistical 

ensembles together. To go from f(x) to F(y): 

𝐹(𝑦) = 𝐿 {𝑓(𝑥)} = ∫ 𝑓(𝑥) 𝑒−𝑥𝑦
∞

0

𝑑𝑥 

For example, Laplace of transform to go from 

microcanonical to canonical: 

𝑄 = ∫ Ω 𝑒−𝛽𝐸𝑑𝐸 

 

Transform 
over N or V

Transform 
over E

[ start ] Ω (𝑁, 𝑉, 𝐸)

Q (𝑁, 𝑉, 𝑇)

Ξ (𝜇, 𝑉, 𝑇) Δ (𝑁, 𝑃, 𝑇)
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Chapter 4 – Boltzmann, FD, BE Statistics 
 

Boltzmann statistics: statistical behavior 

exhibited by classical ideal particles as well as FD 

and BE particles in the classical limit (negligible 

quantum effects), when μβ  0. Valid when the 

number of available molecular states is much 

greater than the number of particles in the system. 

Probability: 

𝑃 =
𝑒−𝛽𝐸𝑗

𝑄
;      𝑄 =

𝑞𝑁

𝑁!
 (indisting. ) 

 

Fermi-Dirac statistics: statistical behavior 

exhibited by fermions. Symmetry in wavefunction, 

in which psi changes sign upon interchanging two 

particles. Reflects natural behavior following Pauli 

exclusion principle (no two particles can occupy 

same state). Partition function (grand): 

ΞFD = Πk[1 + 𝑒−𝛽(𝜖𝑘−𝜇)]
+1

 

Bose-Einstein statistics: statistical behavior 

exhibited by bosons. Symmetry in wavefunction, in 

which psi is unchanged upon interchanging two 

particles. Reflects natural behavior in which 

multiple particles can occupy same state. Partition 

function (grand): 

ΞBE = Πk[1 − 𝑒−𝛽(𝜖𝑘−𝜇)]
−1

 

 

Chapter 5 – Ideal Monatomic Gas  
 

Ideal gas of monatomic molecules: gas 

composed of monatomic particles; ideal meaning 

IMFs can be neglected; when p < 1 atm and T > 

room temp. Equation of state is well represented 

by pV = NkT. Number of available quantum states 

far exceeds number of particles. Partition function:  

𝑄 =
[𝑞(𝑉, 𝑇)]𝑁

𝑁!
 

𝑞 = 𝑞𝑡𝑟𝑎𝑛𝑠𝑞𝑒𝑙𝑒𝑐𝑞𝑛𝑢𝑐 

Classical configuration integral: 3N dimensional 

over spatial coordinates, with exponential of N-

body potential. Arises in evaluation of canonical 

partition function. Not analytically soluble. 116 

𝑍 = ∫ 𝑒−𝛽𝑈(𝑝⃑,𝑞⃑⃑) 𝑑𝑞⃑ 

 

Chapter 6 – Ideal Diatomic Gas 
 

Ideal gas of diatomic molecules: gas composed 

of diatomic molecules; ideal meaning IMFs can be 

neglected; when p < 1 atm and T > room temp. 

Can be well approximated by RR-HO 

approximation. Partition function:  

𝑄 =
[𝑞(𝑉, 𝑇)]𝑁

𝑁!
 

𝑞 = 𝑞𝑡𝑟𝑎𝑛𝑠𝑞𝑟𝑜𝑡𝑞𝑣𝑖𝑏𝑞𝑒𝑙𝑒𝑐𝑞𝑛𝑢𝑐 

Rigid rotor-harmonic oscillator approximation: 

Approximation to treat ideal gas of diatomic 

molecules to separate the Hamiltonian into 

respective degrees of freedom, esp. 𝐻𝑣𝑖𝑏−𝑟𝑜𝑡 =

𝐻𝑣𝑖𝑏 + 𝐻𝑟𝑜𝑡, where Hvib is treated as a harmonic 

oscillator, and Hrot is treated as a rigid rotor. With 

the Hamilton being separable, the total partition 

function can be written as a product of individual 

partition functions. 

 

Chapter 7 – Classical Statistical Mechanics 

 
Partition function:  

𝑄 = ∑ 𝑒−𝛽𝜀𝑗

𝑗

→ 

1

𝑁! ℎ𝑠𝑁
∫ … ∫ 𝑒𝛽𝐻(𝑝,𝑞) 𝑑𝑝 𝑑𝑞 

Phase space: For molecules with sN dimensional 

degrees of freedom, phase space is a 2sN 

dimensional space (6N for Cartesian) of 

coordinates and momenta. An ensemble can be 

represented as a cloud of points, with each 

individual point being a single system in phase 

space. Just as systems are independent in 

ensembles, phase space trajectories are 

independent. 

Liouville equation: equation of motion for the 

distribution function f in phase space for a 

conservative Hamiltonian. 119 
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𝜕𝑓

𝜕𝑡
= − ∑ ( 

𝜕𝐻

𝜕𝑝𝑗

𝜕𝑓

𝜕𝑞𝑗
−

𝜕𝐻

𝜕𝑞𝑗

𝜕𝑓

𝜕𝑝𝑗
)

3𝑁

𝑗=1

 

Liouville theorem: 
𝑑𝑓

𝑑𝑡
= 0, The density of states 

is constant along every trajectory in phase space. 

Means that %s is conserved: phase space volume = 

number of systems in the ensemble. (e.g., Arnold’s 

cat). Leads to ergodic hypothesis. 

Ergodic hypothesis: consequence of Liouville 

theorem. Time average of one system = ensemble 

average at a particular time; over long periods of 

time, the time spent by a system in some region of 

the phase space of microstates with the same 

energy is proportional to the volume of this region; 

all accessible microstates are equiprobable over a 

long period of time. 

Equipartition theorem: Each degree of freedom 

will contribute 
𝑁𝑘𝐵𝑇

2
 to the average energy and 

𝑁𝑘𝐵

2
 

to the heat capacity. For a Cartesian system, the 

contributions are (1) translational 
3𝑁𝑘𝐵𝑇

2
, (2) 

rotational 
3𝑁𝑘𝐵𝑇

2
 , (3) vibrational (3𝑛 − 6)𝑘𝐵𝑇. 

Note that linear molecule as rotational 
2𝑁𝑘𝐵𝑇

2
  or 

3n-5 for a linear molecule. (less rot but minus less) 

Path integral formulation: method by 

which quantum mechanical contributions can be 

incorporated within a classical simulation using 

Feynman path integrals. Maps quantum problem to 

classical one. Each particle and its path can be 

interpreted as a polymer with strings connecting 

nearest neighbors in each chain (ring polymer). 

Moving a quantum particle is equivalent to evolving 

this polymer. 

Path integral  Monte Carlo: To take quantum 

effects into account when calculating properties, a 

path integral formulation may be used. This 

approach leads to a multi-dimensional integral 

which can be calculated using Metropolis Monte 

Carlo, resulting in the path integral Monte Carlo 

method (PIMC). (link, see p. 43) 

Metropolis Monte Carlo: (see flowchart below) 

Direct sampling from some probability distribution 

may be difficult (e.g. no analytical solutions). MMC 

generates sequence of random samples according 

to the desired statistical mechanics distribution. 

Equilibrium properties can be studied.  

Algorithm goes by making a random move, then 

evaluating the Boltzmann probability of such a 

move and comparing the probability against a 

random number. If the Boltzmann probability of 

the move is larger than the random number, the 

move is accepted; otherwise the system is returned 

to its original configuration. 

At the end, a set of configurations is obtained 

according to Boltzmann statistics and the 

expectation value of a property is obtained as a 

simple arithmetic average of property values from 

individual accepted configurations. 

 

Chapter 8 – Ideal Polyatomic Gas 
 

Ideal gas of polyatomic molecules: Extended 

using methods of diatomic molecules and classical 

stat mech. (1) Translational same, (2) Vibrational: 

normal coordinates, (3) Rotational: use classical 

instead of quantum, (4, 5) presumably electronic 

and nuclear are same. 

Hindered rotation: rotation that is hindered due 

to atomic interactions, such as from hydrogens for 

C-C bond of ethane. Leads to sinusoidal potential 

energy due to rotation. 

 

Chapter 9 – Chemical Equilibrium 

Equilibrium constant: value of the reaction 

quotient when the reaction has 

reached equilibrium. Function of temperature only 

for an ideal system. 143 

𝐾𝑐 =
𝜌𝑐

𝜈𝑐𝜌𝐷
𝜈𝐷

𝜌𝐴
𝜈𝐴𝜌𝐵

𝜈𝐵
=

𝜌𝑐
𝜈𝑐𝜌𝐷

𝜈𝐷

𝜌𝐴
𝜈𝐴𝜌𝐵

𝜈𝐵
 

http://publications.lib.chalmers.se/records/fulltext/211259/211259.pdf
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Chapter 10 – Quantum Statistics 

Quantum degeneracy: weakly degenerate 

represents small deviations from classical behavior 

- high T and low density; strongly degenerate 

represents large deviations from classical behavior 

- low T and high density. 161 

Virial coefficients: coefficients of virial expansion 

(in p or V); reflect deviations from ideality - 

intermolecular interactions. For B2(T) positive: 

fermions, repulsive, increase in pressure compared 

to ideal. For B2(T) negative: bosons, attractive. 163, 

170 

Strongly degenerate FD gas: ideal FD gas at low 

T and/or high density. Can be applied to free 

electron model of metals (metallic crystals), in 

which many of the physically observable properties 

are due to quantum statistical effects.  

Fermi energy: μ0, at 0 K, the conduction electrons 

in the metal fill all the energy states up to this 

energy value; typically on the order of 1-5 eV. 

Distribution of energy is essentially step function, 

with value of 1 up until μ0, and 0 after.  

Fermi temperature: μ0/kB, compared to this 

characteristic temperature, TF >> TRT, so FD 

distribution is like a step function which goes from 

1 to zero at ε. 166 

ZPE of FD gas: temperature independent, implies 

no contribution of conduction electrons to heat 

capacity, which contrasts with equipartition value 

of 3k/2 for each electron. Why? Since μ0 is so large 

compared to kT, very few particles will be within 

kT near μ0, so only very few can contribute. 

𝐸0 =
3

5
𝑁𝜇0 

Bose-Einstein condensation: the condensation 

of molecules into their ground states at T  T0 or 

as density goes down to some critical density. 

FIRST order process, although there is a uniform 

macroscopic density. Condensation occurs in 

momentum space, since particles are found in same 

region of momentum space (zero momentum). 

Occurs because of effective interaction through the 

symmetry requirement of the N-body 

wavefunction. 

Clapeyron equation: characterizes discontinuous 

phase transition: 

𝑑𝑝

𝑑𝑇
=

Δ𝐻𝑐𝑜𝑛𝑑

𝑇Δ𝑉
 

By taking dp/dT of BE gas and comparing to this, 

the heat of transition between condensed (with 

volume 0) and dilute phases (with specific volume) 

can be derived.  

Chapter 11 – Crystals 

Distribution function g(ν): times dν, gives the 

number of normal frequencies between ν and ν+dν. 

Difficult to calculate exactly. There are two useful 

and well-known approximations to g(ν), Einstein 

and Debye models. 197 

Law of Dulog and Petit: if the N atoms of a 

crystalline solid behave as harmonic oscillators 

about their equilibrium positions, classical theory 

(equipartition) predicts that each atom would 

contribute R cal/deg-mole for each of its 3 

vibrational degrees of freedom. Molar heat capacity 

at constant volume Cv = 3Nk = 3R = 6 cal/deg-

mol. Good agreement with observed heat capacity 

of many crystals at high enough temp, but fails 

completely at low temperatures. 198 

Note to self: don’t confuse with Cartesian 

equipartition theorem with 3Nk/2 translational 

T3 law: experimental observation that, as T  0, 

Cv falls rapidly to zero as T3. Successful theories 

should reproduce this law. 

Einstein model: [1] each atom in crystal vibrates 

about equilibrium configuration as simple 

harmonic oscillator, so entire crystal is set of 3N 

independent HOs, each with frequency ν. [2] each 

atom of the crystal sees the same environment as 

any other, and so all N atoms could be treated as 

independent oscillators in the x, y, and z directions. 

[3] Energy of each of these 3N independent oscillators 

was quantized according to the procedure developed by 

Planck (blackbody radiation theory).  
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g(ν) = 3N δ(ν – νE) 

Assessment: (a) upholds Dulong and Petit 

value of 3Nk as T  ∞. (b) DOES NOT go as 

T3 as T goes to zero. (c) IS consistent with law 

of corresponding states. 198 

Einstein frequency, νE: single frequency assigned 

to all 3N independent oscillators of the crystal. 

Varies from substance to substance. Reflects the 

nature of interatomic interactions for the particular 

crystal. Einstein temperature is hν/k. 

Law of corresponding states, part 1 of __: Cv is 

predicted to be the same function for all 

substances, when plotted against reduced 

temperature T/ΘE. 200 

Debye model: treats the long-wavelength 

frequencies of a crystal in an exact manner. [1] 

Normal modes whose wavelengths are long cf. 

atomic spacing do not depend on atomic character 

of solid and could be calculated by assuming that 

the crystal is a continuous elastic body. 

Approximates all normal frequencies with this. 

𝑔(𝜈) 𝑑𝜈 =
4𝜋𝑉𝜈2

𝑣3
𝑑𝜈 

Assessment: three criteria satisfied of (a) Dulong 

and Petit, (b) T-cubed law, (c) corresponding states. 

However, Debye temperature depends on 

temperature, unlike horizontal for exact theory. 

Debye frequency: “artificial” maximum frequency 

introduced so that the integral of g(ν)dν from 0 to 

νD equals 3N. 202 

Dispersion curve: relation between the frequency 

ω and wave vector k representing wave of 

wavelength 2π/k and frequency ω traveling along 

chain. For frequency distribution for lattice 

dynamics. 208 

Phonon: “quasi-particles,” essentially quanta of 

lattice vibrations, just as photons are quanta of EM 

vibrations. Can be thought of as quanta of sound 

waves, since lattice vibrations are closely related to 

sound waves passing through the crystals. 213 

Brillouin scattering: inelastic scattering of 

phonons with photons, tangent: neutron scattering 

can be used to determine vibrational frequency 

spectrum of crystal. 213 

Chapter 12 – Imperfect Gases 

Imperfect gas: Partition function is no longer of 

the form f(T)V leading to the ideal gas equation of 

state. Imperfect gases are at lower T or higher P 

(higher density), so the intermolecular potential U 

becomes nonneglible. Deviations are expressed as 

an infinite power series in the density ρ. 

Second virial coefficient: can be calculated as 

function of T having intermolecular potential u(r). 

Can be measured experimentally. 233 

Law of corresponding states, part 2 of __: virial 

coefficients can be written in a reduced form as 

functions of only the reduced temperature. This 

function of T* would be the same for all systems. 

243 

Lennard-Jones potential: u(r), but can’t 

analytically integrate B2(T) 

𝑢(𝑟) = 4𝜀 {(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

} 

Hard sphere potential: simulates steep repulsive 

part of realistic potentials, but no attractive part: 

𝑢(𝑟) = {
∞   𝑟 < 𝜎
0    𝑟 > 𝜎

 

Square well potential: extension of hard sphere 

potential that includes attractive term, can be 

handled analytically: Reduces to hard sphere result 

when λ -> 1 or ε -> 0. 

𝑢(𝑟) = {
∞               𝑟 < 𝜎

−𝜀    𝜎 < 𝑟 <  𝜆𝜎
0                𝑟 > 𝜆𝜎

 

 

Chapter 13 – Distribution Functions in 

Classical Monatomic Liquids 

Broad picture: instead of considering 2-body, etc., 

here, consider constant interaction with a large 

number of neighbors in dense systems, e.g. 

liquids, to derive thermodynamic properties. 
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Probability distribution function ρ(1)(r1): 

probability that any one molecule will be found in 

dr1. Independent of r1 for a fluid in which all points 

within V are equivalent. ρ(1) = ρ. 258 

Correlation function g(n)(r1… rn): factor that relates 

ρn to ρ(n). It corrects for the “nonindependence” or, 

i.e., the correlation between the molecules. / 

g(2)(r1,r2) = g(r) can be determined experimentally. 

In liquid of spherically symmetric molecules, it 

depends only on the relative distance r12. 258 

Radial distribution function g(r): ρ*g(r)*4πr2 is 

the number of molecules between r and r+dr about 

a central molecule. g(r) is the factor that multiplies 

the bulk density ρ to give a local density ρ(r) about 

some fixed molecule. As r  0, g  0. As r  ∞, 

g  1.  

Importance: [1] if we assume that the total potential 

energy of the N-body system is pair-wise additive, 

then all the thermodynamic functions of the system 

can be written in terms of g(r).  

 

[2] The radial distribution function can be 

determined by X-ray diffraction studies on liquids, 

related by the scattering of EM radiation. 259

 

Metropolis Monte Carlo Algorithm 
 

 

 

𝑅̃ = 𝑅(𝑛) + 𝑐 ∙ 𝜉 

ξ : random number, [-1, 1] 

c : constant to scale ξ 

______________________________ 

𝑖𝑓
𝑃(𝑅̃)

𝑃(𝑅(𝑛))
= 𝑒−𝛽[𝑈(𝑅̃)−𝑈(𝑅(𝑛)) > 𝜂 

η : random number, [0, 1] 

 

 

  

Start with any R(1), a point in 
configuration space.

Propose a 
random move.

Apply Metropolis criterion to 
determine acceptance.

If YES: R(n+1) = R ̃
-----------------------------------
If NO: R(n+1) = R(n)

(back to blue step)

n=1

n=
n+1
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Derivations of Partition Functions 
 

Isothermal-Isobaric Ensemble (μ, P, T) 
Page 38-40, 52-54, 55/65 

Note: This derivation can be followed analogously for (1) canonical partition function, easier since only two 

constraints for A and E, dealing with single sums; (2) grand-canonical partition function, constrain A, E, N; 

and (3) showing that β depends only on temperature, with two separate ensembles A, B in thermal contact. 

V is index of particular volumes of individual system, since they vary. As usual, i is index of energy level. 

1. Establish constraints for Lagrange multipliers. 

a. Total systems:  

𝐴 = ∑∑ 𝑎𝑉𝑖    →    𝛼 (∑∑ 𝑎𝑉𝑖 − 𝐴) = 0 

b. Total energy: 

𝜀 = ∑∑ 𝑎𝑉𝑖𝐸𝑉𝑖   →    𝛽 (∑∑ 𝑎𝑉𝑖𝐸𝑉𝑖 − 𝜀) = 0 

c. Total volume: 

𝑉̃  = ∑∑ 𝑎𝑉𝑖𝑉𝑉𝑖   →    𝛿 (∑∑ 𝑎𝑉𝑖𝑉𝑉𝑖 − 𝑉̃) = 0 

 

2. Write the formula for probability. 

𝑃 =
𝑎∗

𝐴
 ,   where a* is the most probable occupation.  

3. Consider number of possible rearrangements (W) to find most probable one (a*). Basic min/max 

problem: differentiate and set equal to zero. 

𝑊(𝑎) =
𝐴!

Π𝑉  Πj 𝑎𝑉𝑗!
 

a. Here, we will use ln (W) to make the math easier, since we get to use Stirling’s law in the 

limit of large W, where   ln ( M ! ) = M ln M – M. 

ln 𝑊(𝑎) = ln(𝐴!) − ln(Π𝑉  Πj 𝑎𝑉𝑗!) 

= 𝐴 ln 𝐴 − 𝐴 − Π𝑉  Πj 𝑎𝑉𝑗 ln(Π𝑉  Πj 𝑎𝑉𝑗) + Π𝑉  Πj 𝑎𝑉𝑗 

b. Subtract in the three zeros from the constraints of step 1. 

c. Differentiate with respect to a. Rename this a* in the expression since it is the sought var.  

i. Note that all terms without little a automatically go to zero. 

ii. Summation goes away, since only considering the specific ai of maxing W. 

iii. Solve for a, which should have exponentials to undo the log. 

 

4. Now pass this back to expression for probability in step 2. The denominator is the partition function! 

 

Note: alpha is eliminated from expression at the end: 

1. Taking a* expression with exponentials, 

2. Summing over all k on both sides, 

3. LHS goes to A, 

4. RHS pull e-α out of denominator, and solve for this. 

5. Plug step 4 into probability, and the A terms should cancel top and bottom. 
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Monatomic Ideal Gas (translational) 
Page 82 

1. Start with energies for particle in a 3D box:  

𝜀𝑛𝑥𝑛𝑦𝑛𝑧
=

ℎ2

8𝑚𝑎2 (𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑦
2) 

 

2. Insert into general form of canonical partition function: 

𝑞𝑡𝑟𝑎𝑛𝑠 = ∑ 𝑒
−𝛽𝜀𝑛𝑥𝑛𝑦𝑛𝑧

∞

𝑛𝑥,𝑛𝑦,𝑛𝑧=1

 

= ∑ exp (−
𝛽ℎ2𝑛𝑥

2

8𝑚𝑎2 )

∞

𝑛𝑥=1

  ∑ exp (−
𝛽ℎ2𝑛𝑦

2

8𝑚𝑎2 ) 

∞

𝑛𝑦=1

∑ exp (−
𝛽ℎ2𝑛𝑧

2

8𝑚𝑎2 ) 

∞

𝑛𝑧=1

 

 

3. Apply box symmetry (cube the equation). 

= [∑ exp (−
𝛽ℎ2𝑛2

8𝑚𝑎2
 )

∞

𝑛=1

]

3

 

 

4. Approximate with integral, since successive terms are very close to each other: 

= [∫ exp (−
𝛽ℎ2𝑛2

8𝑚𝑎2
 )

∞

0

𝑑𝑛]

3

 

 

5. Use Gaussian integral property, and also replace V=a3. 

= (
2𝜋𝑚𝑘𝑇

ℎ2
)

3
2

𝑉 
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Diatomic Ideal Gas (vibrational) 
Page 96 

1. Start with energies for harmonic oscillator:  

𝜀 = (𝑛 +
1

2
) ℎ𝜈    𝑛 = 0,1,2, … 

 

2. Insert into general form of canonical partition function: 

𝑞𝑣𝑖𝑏 = ∑ 𝑒−𝛽𝜀𝑛

∞

𝑛=0

= ∑ 𝑒
−𝛽(𝑛+

1
2

)ℎ𝜈

∞

𝑛=0

 

 

3. Separate the ½ term out. 

= 𝑒−𝛽
1
2

ℎ𝜈 ∑ 𝑒−𝛽𝑛ℎ𝜈

∞

𝑛=0

 

 

4. Recognize that the second term (summation) is a geometric series: 

=
𝑒−𝛽

1
2

ℎ𝜈

1 − 𝑒−𝛽ℎ𝜈
 

 

5. (opt.) At very high temperatures, go from step 3, replace with integral, and use exponential integral: 

= 𝑒
−𝛽ℎ𝜈

2 ∫ 𝑒−𝛽𝑛ℎ𝜈𝑑𝑛
∞

0

=
𝑘𝑇

ℎ𝜈
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Diatomic Ideal Gas (rotational) 
Page 99 

1. Start with energies and degeneracies(!!) for rigid rotor:  

𝜀 =
ℏ2𝐽(𝐽 + 1)

2𝐼
       𝐽 = 0,1,2, … 

 

𝜔 = 2𝐽 + 1                                       

 

2. Insert into general form of canonical partition function: 

(don’t forget to multiply each energy by its degeneracy!!) 

𝑞𝑣𝑖𝑏 = ∑(2𝐽 + 1) 𝑒−𝛽 
ℏ2𝐽(𝐽+1)

2𝐼

∞

𝐽=0

 

 

3. (opt.) Introduce rotational temperature: Θ𝑟𝑜𝑡 =
ℏ2

2 𝐼 𝑘
 

 

𝑞𝑣𝑖𝑏 = ∑(2𝐽 + 1) 𝑒−Θ 𝐽(𝐽+1)/𝑇

∞

𝐽=0

 

 

4. (opt.) At very high temperatures, replace sum with integral, and use exponential integral. 
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Polyatomic Ideal Gas (rotational, symmetric top) 
Page 135 

Note: For a spherical top, follow the same algorithm: (1) get energy, (2) insert into partition function; don’t 

forget to multiply by exponential, (3) convert to integral. Approximation for integral is to neglect 1 in 

comparison to J.

1. Start with energies and degeneracies(!!) for symmetric top (rigid rotor):  

𝜀 =
ℏ2

2
{
𝐽(𝐽 + 1)

𝐼𝐴
+ 𝐾2 (

1

𝐼𝑐
−

1

𝐼𝐴
)}        𝐽 = 0,1,2, …       𝐾 =  −𝐽, … , 𝐽 

 

𝜔 = 2𝐽 + 1                                       

 

2. Insert into general form of canonical partition function: 

(don’t forget to multiply each energy by its degeneracy!!) 

𝑞𝑣𝑖𝑏 =
1

𝜎
∑(2𝐽 + 1) 𝑒−𝛼𝐴 𝐽(𝐽+1)

∞

𝐽=0

∑ 𝑒−(𝛼𝐶−𝛼𝐴) 𝐾2 

+𝐽

𝐾=−𝐽

 

 

 

3. Convert sum to double integral over J and K. 

4. Use high temperature approximation to neglect 1 in degeneracy and J term in exponential. 

5. Switch order of integration from dK dJ to dJ dK. Don’t forget to switch limits of integrand! 

6. Use M-substitution, M=J2,    dM = 2J dJ. 

7. Integrate the K part. Will need to break up into one term from 0 to inf, subtract term from 0 to K2. 

8. Simplify (one part of K integral cancels the alpha-K). Integrate the J part.  

  


